60.2.153 problem 729

Internal problem ID [10727]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 729
Date solved : Sunday, March 30, 2025 at 06:27:38 PM
CAS classification : [_rational]

\begin{align*} y^{\prime }&=\frac {y \left (x -y\right )}{x \left (x -y^{3}\right )} \end{align*}

Maple. Time used: 0.015 (sec). Leaf size: 316
ode:=diff(y(x),x) = y(x)*(x-y(x))/x/(x-y(x)^3); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-27 x +3 \sqrt {24 c_1^{3}-72 c_1^{2} \ln \left (x \right )+72 c_1 \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{2}/{3}}+6 \ln \left (x \right )-6 c_1}{3 \left (-27 x +3 \sqrt {24 c_1^{3}-72 c_1^{2} \ln \left (x \right )+72 c_1 \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{1}/{3}}} \\ y &= -\frac {\left (\frac {i \sqrt {3}}{6}+\frac {1}{6}\right ) \left (-27 x +3 \sqrt {24 c_1^{3}-72 c_1^{2} \ln \left (x \right )+72 c_1 \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{2}/{3}}+\left (-\ln \left (x \right )+c_1 \right ) \left (i \sqrt {3}-1\right )}{\left (-27 x +3 \sqrt {24 c_1^{3}-72 c_1^{2} \ln \left (x \right )+72 c_1 \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{1}/{3}}} \\ y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-27 x +3 \sqrt {24 c_1^{3}-72 c_1^{2} \ln \left (x \right )+72 c_1 \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{2}/{3}}}{6}+\left (1+i \sqrt {3}\right ) \left (-\ln \left (x \right )+c_1 \right )}{\left (-27 x +3 \sqrt {24 c_1^{3}-72 c_1^{2} \ln \left (x \right )+72 c_1 \ln \left (x \right )^{2}-24 \ln \left (x \right )^{3}+81 x^{2}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 6.507 (sec). Leaf size: 320
ode=D[y[x],x] == ((x - y[x])*y[x])/(x*(x - y[x]^3)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2 \sqrt [3]{2} (-\log (x)+c_1)}{\sqrt [3]{54 x+2 \sqrt {729 x^2+(-6 \log (x)+6 c_1){}^3}}}-\frac {\sqrt [3]{54 x+2 \sqrt {729 x^2+(-6 \log (x)+6 c_1){}^3}}}{3 \sqrt [3]{2}} \\ y(x)\to \frac {i \sqrt [3]{2} \left (\sqrt {3}+i\right ) (-\log (x)+c_1)}{\sqrt [3]{54 x+2 \sqrt {729 x^2+(-6 \log (x)+6 c_1){}^3}}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{54 x+2 \sqrt {729 x^2+(-6 \log (x)+6 c_1){}^3}}}{6 \sqrt [3]{2}} \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{54 x+2 \sqrt {729 x^2+(-6 \log (x)+6 c_1){}^3}}}{6 \sqrt [3]{2}}-\frac {i \sqrt [3]{2} \left (\sqrt {3}-i\right ) (-\log (x)+c_1)}{\sqrt [3]{54 x+2 \sqrt {729 x^2+(-6 \log (x)+6 c_1){}^3}}} \\ y(x)\to 0 \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x - y(x))*y(x)/(x*(x - y(x)**3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out