60.2.205 problem 781

Internal problem ID [10779]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 1, Additional non-linear first order
Problem number : 781
Date solved : Sunday, March 30, 2025 at 06:37:02 PM
CAS classification : [_rational, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} y^{\prime }&=\frac {\left (x^{4}+x^{3}+x +3 y^{2}\right ) y}{\left (6 y^{2}+x \right ) x} \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 70
ode:=diff(y(x),x) = 1/(6*y(x)^2+x)*(x^4+x^3+x+3*y(x)^2)*y(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {y^{2} x}{6 y^{2}+x} = \frac {\left ({\mathrm e}^{\operatorname {RootOf}\left (2 x^{3} {\mathrm e}^{\textit {\_Z}}+3 x^{2} {\mathrm e}^{\textit {\_Z}}-3 \,{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {{\mathrm e}^{\textit {\_Z}}+9}{x}\right )+3 \,{\mathrm e}^{\textit {\_Z}} \ln \left (2\right )+9 c_1 \,{\mathrm e}^{\textit {\_Z}}+3 \textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+27\right )}+9\right ) x}{54} \]
Mathematica. Time used: 0.394 (sec). Leaf size: 89
ode=D[y[x],x] == (y[x]*(x + x^3 + x^4 + 3*y[x]^2))/(x*(x + 6*y[x]^2)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [-\frac {\int _1^x-\frac {6 y(x)}{K[1]^2}dK[1]{}^2}{2 \int _1^x-\frac {6}{K[1]^2}dK[1]}+\int _1^x\left (-K[1]^2-K[1]-\frac {1}{K[1]}-\frac {3 y(x)^2}{K[1]^2}\right )dK[1]+\frac {3 y(x)^2}{x}+\log (y(x))=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x**4 + x**3 + x + 3*y(x)**2)*y(x)/(x*(x + 6*y(x)**2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out