Internal
problem
ID
[10893]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
897
Date
solved
:
Sunday, March 30, 2025 at 07:20:35 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = (-108*x^(3/2)*y(x)+18*x^(9/2)-108*x^(3/2)-216*y(x)^3+108*x^3*y(x)^2-18*y(x)*x^6+x^9)*x^(1/2)/(-216*y(x)+36*x^3-216); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (Sqrt[x]*(-108*x^(3/2) + 18*x^(9/2) + x^9 - 108*x^(3/2)*y[x] - 18*x^6*y[x] + 108*x^3*y[x]^2 - 216*y[x]^3))/(-216 + 36*x^3 - 216*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sqrt(x)*(18*x**(9/2) - 108*x**(3/2)*y(x) - 108*x**(3/2) + x**9 - 18*x**6*y(x) + 108*x**3*y(x)**2 - 216*y(x)**3)/(36*x**3 - 216*y(x) - 216) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)