Internal
problem
ID
[10911]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
1,
Additional
non-linear
first
order
Problem
number
:
915
Date
solved
:
Sunday, March 30, 2025 at 07:22:32 PM
CAS
classification
:
[[_Abel, `2nd type`, `class C`]]
ode:=diff(y(x),x) = -(-y(x)^3-y(x)+4*y(x)^2*ln(x)-4*ln(x)^2*y(x)^3-1+6*y(x)*ln(x)-12*ln(x)^2*y(x)^2+8*ln(x)^3*y(x)^3)/y(x)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == (1 + y[x] - 6*Log[x]*y[x] - 4*Log[x]*y[x]^2 + 12*Log[x]^2*y[x]^2 + y[x]^3 + 4*Log[x]^2*y[x]^3 - 8*Log[x]^3*y[x]^3)/(x*y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + (8*y(x)**3*log(x)**3 - 4*y(x)**3*log(x)**2 - y(x)**3 - 12*y(x)**2*log(x)**2 + 4*y(x)**2*log(x) + 6*y(x)*log(x) - y(x) - 1)/(x*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - ((-8*y(x)**2*log(x)**3 + 4*y(x)**2*log(x)**2 + y(x)**2 + 12*y(x)*log(x)**2 - 4*y(x)*log(x) - 6*log(x) + 1)*y(x) + 1)/(x*y(x)) cannot be solved by the factorable group method