60.3.50 problem 1055
Internal
problem
ID
[11046]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1055
Date
solved
:
Sunday, March 30, 2025 at 07:40:14 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} y^{\prime \prime }+\left (a x +b \right ) y^{\prime }+\left (\operatorname {a1} \,x^{2}+\operatorname {b1} x +\operatorname {c1} \right ) y&=0 \end{align*}
✓ Maple. Time used: 0.055 (sec). Leaf size: 254
ode:=diff(diff(y(x),x),x)+(a*x+b)*diff(y(x),x)+(a1*x^2+b1*x+c1)*y(x) = 0;
dsolve(ode,y(x), singsol=all);
\[
y = {\mathrm e}^{-\frac {x \left (\left (a x +2 b \right ) \sqrt {a^{2}-4 \operatorname {a1}}+x \left (a^{2}-4 \operatorname {a1} \right )+2 a b -4 \operatorname {b1} \right )}{4 \sqrt {a^{2}-4 \operatorname {a1}}}} \left (c_2 \left (x \,a^{2}+a b -4 \operatorname {a1} x -2 \operatorname {b1} \right ) \operatorname {hypergeom}\left (\left [\frac {3 \left (a^{2}-4 \operatorname {a1} \right )^{{3}/{2}}+a^{3}-2 a^{2} \operatorname {c1} +2 \left (\operatorname {b1} b -2 \operatorname {a1} \right ) a +2 \left (-b^{2}+4 \operatorname {c1} \right ) \operatorname {a1} -2 \operatorname {b1}^{2}}{4 \left (a^{2}-4 \operatorname {a1} \right )^{{3}/{2}}}\right ], \left [\frac {3}{2}\right ], \frac {\left (x \,a^{2}+a b -4 \operatorname {a1} x -2 \operatorname {b1} \right )^{2}}{2 \left (a^{2}-4 \operatorname {a1} \right )^{{3}/{2}}}\right )+c_1 \operatorname {hypergeom}\left (\left [\frac {\left (a^{2}-4 \operatorname {a1} \right )^{{3}/{2}}+a^{3}-2 a^{2} \operatorname {c1} +\left (2 \operatorname {b1} b -4 \operatorname {a1} \right ) a +\left (-2 b^{2}+8 \operatorname {c1} \right ) \operatorname {a1} -2 \operatorname {b1}^{2}}{4 \left (a^{2}-4 \operatorname {a1} \right )^{{3}/{2}}}\right ], \left [\frac {1}{2}\right ], \frac {\left (x \,a^{2}+a b -4 \operatorname {a1} x -2 \operatorname {b1} \right )^{2}}{2 \left (a^{2}-4 \operatorname {a1} \right )^{{3}/{2}}}\right )\right )
\]
✓ Mathematica. Time used: 0.239 (sec). Leaf size: 305
ode=(c1 + b1*x + a1*x^2)*y[x] + (b + a*x)*D[y[x],x] + D[y[x],{x,2}] == 0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \exp \left (-\frac {x \left (a \left (x \sqrt {a^2-4 \text {a1}}+2 b\right )+2 b \sqrt {a^2-4 \text {a1}}+a^2 x-4 (\text {a1} x+\text {b1})\right )}{4 \sqrt {a^2-4 \text {a1}}}\right ) \left (c_1 \operatorname {HermiteH}\left (\frac {-a^3-\left (\sqrt {a^2-4 \text {a1}}-2 \text {c1}\right ) a^2+(4 \text {a1}-2 b \text {b1}) a+2 \left (\text {b1}^2+\text {a1} \left (b^2-4 \text {c1}+2 \sqrt {a^2-4 \text {a1}}\right )\right )}{2 \left (a^2-4 \text {a1}\right )^{3/2}},\frac {x a^2+b a-2 (\text {b1}+2 \text {a1} x)}{\sqrt {2} \left (a^2-4 \text {a1}\right )^{3/4}}\right )+c_2 \operatorname {Hypergeometric1F1}\left (\frac {a^3+\left (\sqrt {a^2-4 \text {a1}}-2 \text {c1}\right ) a^2+(2 b \text {b1}-4 \text {a1}) a-2 \left (\text {b1}^2+\text {a1} \left (b^2-4 \text {c1}+2 \sqrt {a^2-4 \text {a1}}\right )\right )}{4 \left (a^2-4 \text {a1}\right )^{3/2}},\frac {1}{2},\frac {\left (x a^2+b a-2 (\text {b1}+2 \text {a1} x)\right )^2}{2 \left (a^2-4 \text {a1}\right )^{3/2}}\right )\right )
\]
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
a1 = symbols("a1")
b = symbols("b")
b1 = symbols("b1")
c1 = symbols("c1")
y = Function("y")
ode = Eq((a*x + b)*Derivative(y(x), x) + (a1*x**2 + b1*x + c1)*y(x) + Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
False