60.3.93 problem 1107

Internal problem ID [11089]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1107
Date solved : Sunday, March 30, 2025 at 07:42:13 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+\left (x +b \right ) y^{\prime }+a y&=0 \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 30
ode:=x*diff(diff(y(x),x),x)+(x+b)*diff(y(x),x)+a*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (\operatorname {KummerU}\left (-a +b , b , x\right ) c_2 +\operatorname {KummerM}\left (-a +b , b , x\right ) c_1 \right ) \]
Mathematica. Time used: 0.039 (sec). Leaf size: 36
ode=a*y[x] + (b + x)*D[y[x],x] + x*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x} (c_1 \operatorname {HypergeometricU}(b-a,b,x)+c_2 L_{a-b}^{b-1}(x)) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(a*y(x) + x*Derivative(y(x), (x, 2)) + (b + x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None