60.3.183 problem 1197

Internal problem ID [11179]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1197
Date solved : Sunday, March 30, 2025 at 07:45:08 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-\left (x^{2}-2 x \right ) y^{\prime }-\left (x +a \right ) y&=0 \end{align*}

Maple. Time used: 0.012 (sec). Leaf size: 43
ode:=x^2*diff(diff(y(x),x),x)-(x^2-2*x)*diff(y(x),x)-(x+a)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{\frac {x}{2}} \left (\operatorname {BesselK}\left (\frac {\sqrt {4 a +1}}{2}, \frac {x}{2}\right ) c_2 +\operatorname {BesselI}\left (\frac {\sqrt {4 a +1}}{2}, \frac {x}{2}\right ) c_1 \right )}{\sqrt {x}} \]
Mathematica. Time used: 0.09 (sec). Leaf size: 76
ode=(-a - x)*y[x] - (-2*x + x^2)*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (c_1 \operatorname {BesselJ}\left (\frac {1}{2} \sqrt {4 a+1},-\frac {i x}{2}\right )+c_2 \operatorname {BesselY}\left (\frac {1}{2} \sqrt {4 a+1},-\frac {i x}{2}\right )\right ) \exp \left (\int _1^x\frac {K[1]-1}{2 K[1]}dK[1]\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - (a + x)*y(x) - (x**2 - 2*x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None