60.3.197 problem 1211

Internal problem ID [11193]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1211
Date solved : Sunday, March 30, 2025 at 07:45:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (4 x^{4}+2 x^{2}+1\right ) y&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 33
ode:=x^2*diff(diff(y(x),x),x)+4*x^3*diff(y(x),x)+(4*x^4+2*x^2+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x^{2}} \sqrt {x}\, \left (x^{-\frac {i \sqrt {3}}{2}} c_2 +x^{\frac {i \sqrt {3}}{2}} c_1 \right ) \]
Mathematica. Time used: 0.074 (sec). Leaf size: 60
ode=(1 + 2*x^2 + 4*x^4)*y[x] + 4*x^3*D[y[x],x] + x^2*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{3} e^{-x^2} x^{\frac {1}{2}-\frac {i \sqrt {3}}{2}} \left (3 c_1-i \sqrt {3} c_2 x^{i \sqrt {3}}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**3*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (4*x**4 + 2*x**2 + 1)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None