Internal
problem
ID
[11243]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1263
Date
solved
:
Sunday, March 30, 2025 at 07:58:13 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=x*(x+3)*diff(diff(y(x),x),x)+(3*x-1)*diff(y(x),x)+y(x)-(20*x+30)*(x^2+3*x)^(7/3) = 0; dsolve(ode,y(x), singsol=all);
ode=(-30 - 20*x)*(3*x + x^2)^(7/3) + y[x] + (-1 + 3*x)*D[y[x],x] + x*(3 + x)*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x + 3)*Derivative(y(x), (x, 2)) + (3*x - 1)*Derivative(y(x), x) - (20*x + 30)*(x**2 + 3*x)**(7/3) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (20*x**5*(x*(x + 3))**(1/3) + 150*x**4*(x*(x + 3))**(1/3) + 360*x**3*(x*(x + 3))**(1/3) + 270*x**2*(x*(x + 3))**(1/3) - x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), (x, 2)) - y(x))/(3*x - 1) cannot be solved by the factorable group method