Internal
problem
ID
[11287]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1308
Date
solved
:
Sunday, March 30, 2025 at 08:08:02 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+x*y(x)-ln(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=-Log[x]^3 + x*y[x] - x^2*D[y[x],x] + x^3*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), x) + x*y(x) - log(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)