60.3.311 problem 1328

Internal problem ID [11307]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 2, linear second order
Problem number : 1328
Date solved : Sunday, March 30, 2025 at 08:13:46 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=\frac {2 y}{x \left (x -1\right )^{2}} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 27
ode:=diff(diff(y(x),x),x) = 2/x/(x-1)^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {2 \ln \left (x \right ) c_2 x -c_2 \,x^{2}+c_1 x +c_2}{x -1} \]
Mathematica. Time used: 0.06 (sec). Leaf size: 62
ode=D[y[x],{x,2}] == (2*y[x])/((-1 + x)^2*x); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \exp \left (\int _1^x\frac {1}{K[1]-K[1]^2}dK[1]\right ) \left (c_2 \int _1^x\exp \left (-2 \int _1^{K[2]}\frac {1}{K[1]-K[1]^2}dK[1]\right )dK[2]+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 2)) - 2*y(x)/(x*(x - 1)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), (x, 2)) - 2*y(x)/(x*(x - 1)**2) cannot be solved by the hypergeometric method