Internal
problem
ID
[11316]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1337
Date
solved
:
Sunday, March 30, 2025 at 08:14:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(y(x),x),x) = -1/2/(x+a)*(3*x+a+2*b)/(x+b)*diff(y(x),x)-1/4*(a-b)/(x+a)^2/(x+b)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -1/4*((a - b)*y[x])/((a + x)^2*(b + x)) - ((a + 2*b + 3*x)*D[y[x],x])/(2*(a + x)*(b + x)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq((a - b)*y(x)/(4*(a + x)**2*(b + x)) + Derivative(y(x), (x, 2)) + (a + 2*b + 3*x)*Derivative(y(x), x)/((2*a + 2*x)*(b + x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False