Internal
problem
ID
[11343]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1364
Date
solved
:
Sunday, March 30, 2025 at 08:17:35 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = 1/x*(2*b*c*x^c*(x^2-1)+2*(a-1)*x^2-2*a)/(x^2-1)*diff(y(x),x)-(b^2*c^2*x^(2*c)*(x^2-1)+b*c*x^(c+2)*(2*a-c-1)-b*c*x^c*(2*a-c+1)+x^2*(a*(a-1)-v*(v+1))-a*(a+1))/x^2/(x^2-1)*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-(a*(1 + a)) + ((-1 + a)*a - v*(1 + v))*x^2 - b*(1 + 2*a - c)*c*x^c + b*(-1 + 2*a - c)*c*x^(2 + c) + b^2*c^2*x^(2*c)*(-1 + x^2))*y[x])/(x^2*(-1 + x^2))) + ((-2*a + 2*(-1 + a)*x^2 + 2*b*c*x^c*(-1 + x^2))*D[y[x],x])/(x*(-1 + x^2)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") v = symbols("v") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) - (-2*a + 2*b*c*x**c*(x**2 - 1) + x**2*(2*a - 2))*Derivative(y(x), x)/(x*(x**2 - 1)) + (-a*(a + 1) + b**2*c**2*x**(2*c)*(x**2 - 1) - b*c*x**c*(2*a - c + 1) + b*c*x**(c + 2)*(2*a - c - 1) + x**2*(a*(a - 1) - v*(v + 1)))*y(x)/(x**2*(x**2 - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None