Internal
problem
ID
[11377]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
2,
linear
second
order
Problem
number
:
1398
Date
solved
:
Sunday, March 30, 2025 at 08:18:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x) = -1/(x^2-1)*(3*x^2-1)/x*diff(y(x),x)-(x^2-1-(2*v+1)^2)/(x^2-1)^2*y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}] == -(((-1 - (1 + 2*v)^2 + x^2)*y[x])/(-1 + x^2)^2) - ((-1 + 3*x^2)*D[y[x],x])/(x*(-1 + x^2)); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = symbols("v") y = Function("y") ode = Eq(Derivative(y(x), (x, 2)) + (x**2 - (2*v + 1)**2 - 1)*y(x)/(x**2 - 1)**2 + (3*x**2 - 1)*Derivative(y(x), x)/(x*(x**2 - 1)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False