Internal
problem
ID
[11468]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
3,
linear
third
order
Problem
number
:
1501
Date
solved
:
Sunday, March 30, 2025 at 08:22:50 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(diff(y(x),x),x),x)-2*(x^2-x)*diff(diff(y(x),x),x)+(x^2-2*x+1/4-nu^2)*diff(y(x),x)+(nu^2-1/4)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(-1/4 + nu^2)*y[x] + (1/4 - nu^2 - 2*x + x^2)*D[y[x],x] - 2*(-x + x^2)*D[y[x],{x,2}] + x^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") nu = symbols("nu") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 3)) + (nu**2 - 1/4)*y(x) - (2*x**2 - 2*x)*Derivative(y(x), (x, 2)) + (-nu**2 + x**2 - 2*x + 1/4)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (4*nu**2*y(x) - 8*x**2*Derivative(y(x), (x, 2)) + 4*x**2*Derivative(y(x), (x, 3)) + 8*x*Derivative(y(x), (x, 2)) - y(x))/(4*nu**2 - 4*x**2 + 8*x - 1) cannot be solved by the factorable group method