60.5.16 problem 1553

Internal problem ID [11513]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 4, linear fourth order
Problem number : 1553
Date solved : Sunday, March 30, 2025 at 08:23:58 PM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} x^{2} y^{\prime \prime \prime \prime }+4 x y^{\prime \prime \prime }+2 y^{\prime \prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+4*x*diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_4 x +c_2 \right ) \ln \left (x \right )+c_3 x +c_1 \]
Mathematica. Time used: 0.029 (sec). Leaf size: 29
ode=2*D[y[x],{x,2}] + 4*x*Derivative[3][y][x] + x^2*Derivative[4][y][x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (c_4-2 c_2) x+(c_2 x-c_1) \log (x)+c_3 \]
Sympy. Time used: 0.086 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 4)) + 4*x*Derivative(y(x), (x, 3)) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} x + C_{3} x \log {\left (x \right )} + C_{4} \log {\left (x \right )} \]