Internal
problem
ID
[11533]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
4,
linear
fourth
order
Problem
number
:
1573
Date
solved
:
Sunday, March 30, 2025 at 08:24:19 PM
CAS
classification
:
[[_high_order, _fully, _exact, _linear]]
ode:=(exp(x)+2*x)*diff(diff(diff(diff(y(x),x),x),x),x)+4*(exp(x)+2)*diff(diff(diff(y(x),x),x),x)+6*exp(x)*diff(diff(y(x),x),x)+4*exp(x)*diff(y(x),x)+y(x)*exp(x)-1/x^5 = 0; dsolve(ode,y(x), singsol=all);
ode=-x^(-5) + E^x*y[x] + 4*E^x*D[y[x],x] + 6*E^x*D[y[x],{x,2}] + 4*(2 + E^x)*Derivative[3][y][x] + (E^x + 2*x)*Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x + exp(x))*Derivative(y(x), (x, 4)) + (4*exp(x) + 8)*Derivative(y(x), (x, 3)) + y(x)*exp(x) + 4*exp(x)*Derivative(y(x), x) + 6*exp(x)*Derivative(y(x), (x, 2)) - 1/x**5,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*x**5*(x*Derivative(y(x), (x, 4)) + 4*Derivative(y(x), (x, 3))) - x**5*(y(x) + 6*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)))*exp(x) + 1)*exp(-x)/(4*x**5) cannot be solved by the factorable group method