Internal
problem
ID
[11538]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
5,
linear
fifth
and
higher
order
Problem
number
:
1578
Date
solved
:
Sunday, March 30, 2025 at 08:24:26 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-2*a^2*diff(diff(y(x),x),x)+a^4*y(x)-lambda*(a*x-b)*(diff(diff(y(x),x),x)-a^2*y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=a^4*y[x] - 2*a^2*D[y[x],{x,2}] - \[Lambda]*(-b + a*x)*(-(a^2*y[x]) + D[y[x],{x,2}]) + Derivative[4][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(a**4*y(x) - 2*a**2*Derivative(y(x), (x, 2)) - lambda_*(a*x - b)*(-a**2*y(x) + Derivative(y(x), (x, 2))) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve a**4*y(x) - 2*a**2*Derivative(y(x), (x, 2)) - lambda_*(a*x - b)*(-a**2*y(x) + Derivative(y(x), (x, 2))) + Derivative(y(x), (x, 4))