60.7.114 problem 1727 (book 6.136)

Internal problem ID [11664]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1727 (book 6.136)
Date solved : Sunday, March 30, 2025 at 08:37:29 PM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

\begin{align*} y^{\prime \prime } \left (x -y\right )-h \left (y^{\prime }\right )&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 39
ode:=diff(diff(y(x),x),x)*(x-y(x))-h(diff(y(x),x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x +\operatorname {RootOf}\left (-x +\int _{}^{\textit {\_Z}}\frac {1}{-1+\operatorname {RootOf}\left (\int _{}^{\textit {\_Z}}\frac {\textit {\_a} -1}{h \left (\textit {\_a} \right )}d \textit {\_a} +\ln \left (-\textit {\_g} \right )+c_1 \right )}d \textit {\_g} +c_2 \right ) \]
Mathematica. Time used: 0.171 (sec). Leaf size: 82
ode=-h[D[y[x],x]] + (x - y[x])*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=\int \frac {\exp \left (-\int _1^{K[4]}\frac {K[3]-1}{h(K[3])}dK[3]-c_1\right )}{h(K[4])} \, dK[4]+c_2,y(x)=x-\exp \left (-\int _1^{K[4]}\frac {K[3]-1}{h(K[3])}dK[3]-c_1\right )\right \},\{y(x),K[4]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
h = Function("h") 
ode = Eq((x - y(x))*Derivative(y(x), (x, 2)) - h(Derivative(y(x), x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : 
No algorithms are implemented to solve equation _Dummy_37*x - _Dummy_37*y(x) - h(_X0)