Internal
problem
ID
[12047]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.4-1.
Equations
with
hyperbolic
sine
and
cosine
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 10:21:26 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+a*sinh(beta*x)*y(x)+a*b*sinh(beta*x)-b^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+a*Sinh[\[Beta]*x]*y[x]+a*b*Sinh[\[Beta]*x]-b^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") BETA = symbols("BETA") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(-a*b*sinh(BETA*x) - a*y(x)*sinh(BETA*x) + b**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
PolynomialDivisionFailed : couldnt reduce degree in a polynomial division algorithm when dividing [[], [ANP([mpq(-1,1), mpq(0,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ), ANP([mpq(1,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ)]] by [[ANP([mpq(1,1)], [mpq(1,1), mpq(0,1), mpq(1,1)], QQ)]]. This can happen when its not possible to detect zero in the coefficient domain. The domain of computation is QQ<I>. Zero detection is guaranteed in this coefficient domain. This may indicate a bug in SymPy or the domain is user defined and doesnt implement zero detection properly.