Internal
problem
ID
[12152]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-5.
Equations
containing
combinations
of
trigonometric
functions.
Problem
number
:
57
Date
solved
:
Sunday, March 30, 2025 at 11:21:18 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+a*lambda+lambda*b+2*a*b+a*(lambda-a)*tan(lambda*x)^2+b*(lambda-b)*cot(lambda*x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+\[Lambda]*a+\[Lambda]*b+2*a*b+a*(\[Lambda]-a)*Tan[\[Lambda]*x]^2+b*(\[Lambda]-b)*Cot[\[Lambda]*x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-2*a*b - a*lambda_ - a*(-a + lambda_)*tan(lambda_*x)**2 - b*lambda_ - b*(-b + lambda_)/tan(lambda_*x)**2 - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a**2*tan(lambda_*x)**2 - 2*a*b - a*lambda_*tan(lambda_*x)**2 - a*lambda_ + b**2/tan(lambda_*x)**2 - b*lambda_ - b*lambda_/tan(lambda_*x)**2 - y(x)**2 + Derivative(y(x), x) cannot be solved by the factorable group method