61.16.4 problem 22

Internal problem ID [12176]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.7-3. Equations containing arctangent.
Problem number : 22
Date solved : Monday, March 31, 2025 at 04:13:26 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=\lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n} \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 87
ode:=diff(y(x),x) = lambda*arctan(x)^n*y(x)^2+a*y(x)+a*b-b^2*lambda*arctan(x)^n; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\int \arctan \left (x \right )^{n} {\mathrm e}^{-\int \left (2 \arctan \left (x \right )^{n} \lambda b -a \right )d x}d x b \lambda -c_1 b -{\mathrm e}^{-\int \left (2 \arctan \left (x \right )^{n} \lambda b -a \right )d x}}{c_1 +\lambda \int \arctan \left (x \right )^{n} {\mathrm e}^{-\int \left (2 \arctan \left (x \right )^{n} \lambda b -a \right )d x}d x} \]
Mathematica. Time used: 1.784 (sec). Leaf size: 240
ode=D[y[x],x]==\[Lambda]*ArcTan[x]^n*y[x]^2+a*y[x]+a*b-b^2*\[Lambda]*ArcTan[x]^n; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^x\frac {\exp \left (-\int _1^{K[2]}\left (2 b \lambda \arctan (K[1])^n-a\right )dK[1]\right ) \left (-b \lambda \arctan (K[2])^n+\lambda y(x) \arctan (K[2])^n+a\right )}{a n \lambda (b+y(x))}dK[2]+\int _1^{y(x)}\left (-\int _1^x\left (\frac {\exp \left (-\int _1^{K[2]}\left (2 b \lambda \arctan (K[1])^n-a\right )dK[1]\right ) \arctan (K[2])^n}{a n (b+K[3])}-\frac {\exp \left (-\int _1^{K[2]}\left (2 b \lambda \arctan (K[1])^n-a\right )dK[1]\right ) \left (-b \lambda \arctan (K[2])^n+\lambda K[3] \arctan (K[2])^n+a\right )}{a n \lambda (b+K[3])^2}\right )dK[2]-\frac {\exp \left (-\int _1^x\left (2 b \lambda \arctan (K[1])^n-a\right )dK[1]\right )}{a n \lambda (b+K[3])^2}\right )dK[3]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
lambda_ = symbols("lambda_") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*b - a*y(x) + b**2*lambda_*atan(x)**n - lambda_*y(x)**2*atan(x)**n + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out