Internal
problem
ID
[12183]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.7-3.
Equations
containing
arctangent.
Problem
number
:
29
Date
solved
:
Monday, March 31, 2025 at 04:17:18 AM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2+lambda*x*arccot(x)^n*y(x)+arccot(x)^n*lambda; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2+\[Lambda]*x*ArcCot[x]^n*y[x]+\[Lambda]*ArcCot[x]^n; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-lambda_*x*(-atan(x) + pi/2)**n*y(x) - lambda_*(-atan(x) + pi/2)**n - y(x)**2 + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out