61.30.7 problem 155

Internal problem ID [12576]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-5
Problem number : 155
Date solved : Monday, March 31, 2025 at 05:39:47 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-3 x y^{\prime }+n \left (n +2\right ) y&=0 \end{align*}

Maple. Time used: 0.056 (sec). Leaf size: 68
ode:=(-x^2+1)*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+n*(n+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 \left (-\sqrt {x^{2}-1}+x \right ) \left (x +\sqrt {x^{2}-1}\right )^{-1-n}-c_2 \left (x +\sqrt {x^{2}-1}\right )^{n}}{\sqrt {x^{2}-1}\, \left (-\sqrt {x^{2}-1}+x \right )} \]
Mathematica. Time used: 0.044 (sec). Leaf size: 42
ode=(1-x^2)*D[y[x],{x,2}]-3*x*D[y[x],x]+n*(n+2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_1 P_{n+\frac {1}{2}}^{\frac {1}{2}}(x)+c_2 Q_{n+\frac {1}{2}}^{\frac {1}{2}}(x)}{\sqrt [4]{x^2-1}} \]
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(n*(n + 2)*y(x) - 3*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False