61.30.14 problem 162

Internal problem ID [12583]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-5
Problem number : 162
Date solved : Monday, March 31, 2025 at 05:40:06 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} \left (a \,x^{2}+b \right ) y^{\prime \prime }+a x y^{\prime }+c y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 57
ode:=(a*x^2+b)*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+c*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+b}\right )^{\frac {i \sqrt {c}}{\sqrt {a}}}+c_2 \left (\sqrt {a}\, x +\sqrt {a \,x^{2}+b}\right )^{-\frac {i \sqrt {c}}{\sqrt {a}}} \]
Mathematica. Time used: 0.072 (sec). Leaf size: 62
ode=(a*x^2+b)*D[y[x],{x,2}]+a*x*D[y[x],x]+c*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \cos \left (\frac {\sqrt {c} \text {arcsinh}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a}}\right )+c_2 \sin \left (\frac {\sqrt {c} \text {arcsinh}\left (\frac {\sqrt {a} x}{\sqrt {b}}\right )}{\sqrt {a}}\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(a*x*Derivative(y(x), x) + c*y(x) + (a*x**2 + b)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False