7.11.15 problem 15

Internal problem ID [336]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.5 (Nonhomogeneous equations and undetermined coefficients). Problems at page 161
Problem number : 15
Date solved : Saturday, March 29, 2025 at 04:51:04 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\left (5\right )}+5 y^{\prime \prime \prime \prime }-y&=17 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 101
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)+5*diff(diff(diff(diff(y(x),x),x),x),x)-y(x) = 17; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -17+c_1 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}+5 \textit {\_Z}^{4}-1, \operatorname {index} =1\right ) x}+c_2 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}+5 \textit {\_Z}^{4}-1, \operatorname {index} =2\right ) x}+c_3 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}+5 \textit {\_Z}^{4}-1, \operatorname {index} =3\right ) x}+c_4 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}+5 \textit {\_Z}^{4}-1, \operatorname {index} =4\right ) x}+c_5 \,{\mathrm e}^{\operatorname {RootOf}\left (\textit {\_Z}^{5}+5 \textit {\_Z}^{4}-1, \operatorname {index} =5\right ) x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 122
ode=D[y[x],{x,5}]+5*D[y[x],{x,4}]-y[x]==17; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_4 \exp \left (x \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}^4-1\&,4\right ]\right )+c_5 \exp \left (x \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}^4-1\&,5\right ]\right )+c_3 \exp \left (x \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}^4-1\&,3\right ]\right )+c_2 \exp \left (x \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}^4-1\&,2\right ]\right )+c_1 \exp \left (x \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}^4-1\&,1\right ]\right )-17 \]
Sympy. Time used: 0.476 (sec). Leaf size: 99
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + 5*Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)) - 17,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x \operatorname {CRootOf} {\left (x^{5} + 5 x^{4} - 1, 0\right )}} + C_{4} e^{x \operatorname {CRootOf} {\left (x^{5} + 5 x^{4} - 1, 1\right )}} + C_{5} e^{x \operatorname {CRootOf} {\left (x^{5} + 5 x^{4} - 1, 2\right )}} + \left (C_{1} \sin {\left (x \operatorname {im}{\left (\operatorname {CRootOf} {\left (x^{5} + 5 x^{4} - 1, 3\right )}\right )} \right )} + C_{2} \cos {\left (x \operatorname {im}{\left (\operatorname {CRootOf} {\left (x^{5} + 5 x^{4} - 1, 3\right )}\right )} \right )}\right ) e^{x \operatorname {re}{\left (\operatorname {CRootOf} {\left (x^{5} + 5 x^{4} - 1, 3\right )}\right )}} - 17 \]