Internal
problem
ID
[12826]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
6
Date
solved
:
Monday, March 31, 2025 at 07:17:06 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=(x^2+y(x)^2)*(1+diff(y(x),x))^2-2*(x+y(x))*(1+diff(y(x),x))*(x+y(x)*diff(y(x),x))+(x+y(x)*diff(y(x),x))^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2+y[x]^2)*(1+D[y[x],x])^2-2*(x+y[x])*(1+D[y[x],x])*(x+y[x]*D[y[x],x])+(x+y[x]*D[y[x],x])^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + y(x)*Derivative(y(x), x))**2 - (x + y(x)*Derivative(y(x), x))*(2*x + 2*y(x))*(Derivative(y(x), x) + 1) + (x**2 + y(x)**2)*(Derivative(y(x), x) + 1)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out