Internal
problem
ID
[12906]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
VIII,
Linear
differential
equations
of
the
second
order.
Article
54.
Change
of
independent
variable.
Page
127
Problem
number
:
Ex
5
Date
solved
:
Monday, March 31, 2025 at 07:24:12 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x*diff(diff(y(x),x),x)-(2*x^2+1)*diff(y(x),x)-8*x^3*y(x) = 4*x^3*exp(-x^2); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-(2*x^2+1)*D[y[x],x]-8*x^3*y[x]==4*x^3*Exp[-x^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**3*y(x) - 4*x**3*exp(-x**2) + x*Derivative(y(x), (x, 2)) - (2*x**2 + 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*(-8*x**2*y(x)*exp(x**2) - 4*x**2 + exp(x**2)*Derivative(y(x), (x, 2)))*exp(-x**2)/(2*x**2 + 1) + Derivative(y(x), x) cannot be solved by the factorable group method