62.36.4 problem Ex 4

Internal problem ID [12931]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139
Problem number : Ex 4
Date solved : Monday, March 31, 2025 at 07:24:57 AM
CAS classification : [[_3rd_order, _fully, _exact, _linear]]

\begin{align*} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 41
ode:=(x^3-x)*diff(diff(diff(y(x),x),x),x)+(8*x^2-3)*diff(diff(y(x),x),x)+14*x*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\frac {c_3}{\sqrt {x +1}\, \sqrt {x -1}}+c_1 +\frac {c_2 \ln \left (x +\sqrt {x^{2}-1}\right )}{\sqrt {x^{2}-1}}}{x} \]
Mathematica. Time used: 0.197 (sec). Leaf size: 68
ode=(x^3-x)*D[y[x],{x,3}]+(8*x^2-3)*D[y[x],{x,2}]+14*x*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {c_3 \arcsin (x) \csc \left (\frac {1}{2} (2 \arcsin (x)+\pi )\right )+c_3 \log \left (\cos \left (\frac {1}{4} (2 \arcsin (x)+\pi )\right )\right )-\frac {c_2}{\sqrt {x^2-1}}-\frac {1}{2} c_3 \log (1-x)+c_1}{x} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(14*x*Derivative(y(x), x) + (8*x**2 - 3)*Derivative(y(x), (x, 2)) + (x**3 - x)*Derivative(y(x), (x, 3)) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(-x**2*Derivative(y(x), (x, 3)) - 8*x*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3))) - 4*y(x) + 3*Derivative(y(x), (x, 2)))/(14*x) cannot be solved by the factorable group method