7.11.55 problem 57

Internal problem ID [376]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 2. Linear Equations of Higher Order. Section 2.5 (Nonhomogeneous equations and undetermined coefficients). Problems at page 161
Problem number : 57
Date solved : Saturday, March 29, 2025 at 04:52:04 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-y&=72 x^{5} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 72*x^5; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 x^{6}+c_2 \,x^{2}+c_1}{x} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 21
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==72*x^5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 3 x^5+c_2 x+\frac {c_1}{x} \]
Sympy. Time used: 0.222 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-72*x**5 + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x + 3 x^{5} \]