63.14.4 problem 1(d)

Internal problem ID [13109]
Book : A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section : Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130
Problem number : 1(d)
Date solved : Monday, March 31, 2025 at 07:34:31 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} x^{\prime \prime \prime }-x^{\prime }-8 x&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 128
ode:=diff(diff(diff(x(t),t),t),t)-diff(x(t),t)-8*x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = c_1 \,{\mathrm e}^{\frac {\left (\left (108+3 \sqrt {1293}\right )^{{2}/{3}}+3\right ) t}{3 \left (108+3 \sqrt {1293}\right )^{{1}/{3}}}}+{\mathrm e}^{-\frac {\left (\left (108+3 \sqrt {1293}\right )^{{2}/{3}}+3\right ) t}{6 \left (108+3 \sqrt {1293}\right )^{{1}/{3}}}} \left (-c_2 \sin \left (\frac {\sqrt {3}\, \left (\left (108+3 \sqrt {3}\, \sqrt {431}\right )^{{2}/{3}}-3\right ) t}{6 \left (108+3 \sqrt {3}\, \sqrt {431}\right )^{{1}/{3}}}\right )+c_3 \cos \left (\frac {\sqrt {3}\, \left (\left (108+3 \sqrt {3}\, \sqrt {431}\right )^{{2}/{3}}-3\right ) t}{6 \left (108+3 \sqrt {3}\, \sqrt {431}\right )^{{1}/{3}}}\right )\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 69
ode=D[x[t],{t,3}]-D[x[t],t]-8*x[t]==0; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ x(t)\to c_2 \exp \left (t \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}-8\&,2\right ]\right )+c_3 \exp \left (t \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}-8\&,3\right ]\right )+c_1 \exp \left (t \text {Root}\left [\text {$\#$1}^3-\text {$\#$1}-8\&,1\right ]\right ) \]
Sympy. Time used: 0.558 (sec). Leaf size: 177
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-8*x(t) - Derivative(x(t), t) + Derivative(x(t), (t, 3)),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} e^{- \frac {t \left (\frac {1}{\sqrt [3]{\frac {\sqrt {1293}}{9} + 4}} + 3 \sqrt [3]{\frac {\sqrt {1293}}{9} + 4}\right )}{6}} \sin {\left (\frac {\sqrt {3} t \left (- 3 \sqrt [3]{\frac {\sqrt {1293}}{9} + 4} + \frac {1}{\sqrt [3]{\frac {\sqrt {1293}}{9} + 4}}\right )}{6} \right )} + C_{2} e^{- \frac {t \left (\frac {1}{\sqrt [3]{\frac {\sqrt {1293}}{9} + 4}} + 3 \sqrt [3]{\frac {\sqrt {1293}}{9} + 4}\right )}{6}} \cos {\left (\frac {\sqrt {3} t \left (- 3 \sqrt [3]{\frac {\sqrt {1293}}{9} + 4} + \frac {1}{\sqrt [3]{\frac {\sqrt {1293}}{9} + 4}}\right )}{6} \right )} + C_{3} e^{t \left (\frac {1}{3 \sqrt [3]{\frac {\sqrt {1293}}{9} + 4}} + \sqrt [3]{\frac {\sqrt {1293}}{9} + 4}\right )} \]