64.24.7 problem 7

Internal problem ID [13621]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 13, Nonlinear differential equations. Section 13.2, Exercises page 656
Problem number : 7
Date solved : Monday, March 31, 2025 at 08:02:57 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+5 y \left (t \right ) \end{align*}

Maple. Time used: 0.105 (sec). Leaf size: 81
ode:=[diff(x(t),t) = x(t)-y(t), diff(y(t),t) = x(t)+5*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{\left (3+\sqrt {3}\right ) t}+c_2 \,{\mathrm e}^{-\left (-3+\sqrt {3}\right ) t} \\ y \left (t \right ) &= -c_1 \,{\mathrm e}^{\left (3+\sqrt {3}\right ) t} \sqrt {3}+c_2 \,{\mathrm e}^{-\left (-3+\sqrt {3}\right ) t} \sqrt {3}-2 c_1 \,{\mathrm e}^{\left (3+\sqrt {3}\right ) t}-2 c_2 \,{\mathrm e}^{-\left (-3+\sqrt {3}\right ) t} \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 147
ode={D[x[t],t]==x[t]-y[t],D[y[t],t]==x[t]+5*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{6} e^{-\left (\left (\sqrt {3}-3\right ) t\right )} \left (c_1 \left (\left (3-2 \sqrt {3}\right ) e^{2 \sqrt {3} t}+3+2 \sqrt {3}\right )-\sqrt {3} c_2 \left (e^{2 \sqrt {3} t}-1\right )\right ) \\ y(t)\to \frac {1}{6} e^{-\left (\left (\sqrt {3}-3\right ) t\right )} \left (\sqrt {3} c_1 \left (e^{2 \sqrt {3} t}-1\right )+c_2 \left (\left (3+2 \sqrt {3}\right ) e^{2 \sqrt {3} t}+3-2 \sqrt {3}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.191 (sec). Leaf size: 66
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) + y(t) + Derivative(x(t), t),0),Eq(-x(t) - 5*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{1} \left (\sqrt {3} + 2\right ) e^{t \left (3 - \sqrt {3}\right )} - C_{2} \left (2 - \sqrt {3}\right ) e^{t \left (\sqrt {3} + 3\right )}, \ y{\left (t \right )} = C_{1} e^{t \left (3 - \sqrt {3}\right )} + C_{2} e^{t \left (\sqrt {3} + 3\right )}\right ] \]