65.1.5 problem 5.1 (v)

Internal problem ID [13637]
Book : AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section : Chapter 5, Trivial differential equations. Exercises page 33
Problem number : 5.1 (v)
Date solved : Monday, March 31, 2025 at 08:03:29 AM
CAS classification : [_quadrature]

\begin{align*} T^{\prime }&={\mathrm e}^{-t} \sin \left (2 t \right ) \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 25
ode:=diff(T(t),t) = exp(-t)*sin(2*t); 
dsolve(ode,T(t), singsol=all);
 
\[ T = \frac {{\mathrm e}^{-t} \left (-2 \cos \left (2 t \right )-\sin \left (2 t \right )\right )}{5}+c_1 \]
Mathematica. Time used: 0.012 (sec). Leaf size: 27
ode=D[ T[t],t]==Exp[-t]*Sin[2*t]; 
ic={}; 
DSolve[{ode,ic},T[t],t,IncludeSingularSolutions->True]
 
\[ T(t)\to \int _1^te^{-K[1]} \sin (2 K[1])dK[1]+c_1 \]
Sympy. Time used: 0.154 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
T = Function("T") 
ode = Eq(Derivative(T(t), t) - exp(-t)*sin(2*t),0) 
ics = {} 
dsolve(ode,func=T(t),ics=ics)
 
\[ T{\left (t \right )} = C_{1} - \frac {e^{- t} \sin {\left (2 t \right )}}{5} - \frac {2 e^{- t} \cos {\left (2 t \right )}}{5} \]