7.16.8 problem 8

Internal problem ID [505]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.4 (Method of Frobenius: The exceptional cases). Problems at page 246
Problem number : 8
Date solved : Saturday, March 29, 2025 at 04:55:19 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.033 (sec). Leaf size: 42
Order:=6; 
ode:=x*(1-x)*diff(diff(y(x),x),x)-3*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{4} \left (1+2 x +3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (-144-96 x -48 x^{2}+48 x^{4}+96 x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.044 (sec). Leaf size: 40
ode=x*(1-x)*D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (x^2+\frac {1}{x^2}-4 x-\frac {4}{x}+6\right )+c_2 \left (\frac {x^2}{6}-\frac {2 x}{3}+1\right ) \]
Sympy. Time used: 0.958 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(1 - x)*Derivative(y(x), (x, 2)) + 2*y(x) - 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x^{4} \left (\frac {2 x}{5} + 1\right ) + O\left (x^{6}\right ) \]