Internal
problem
ID
[14414]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.1,
page
186
Problem
number
:
6
Date
solved
:
Monday, March 31, 2025 at 12:26:28 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=(x^2-4)*diff(diff(y(x),x),x)+y(x)*ln(x) = x*exp(x); ic:=y(1) = 1, D(y)(1) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=(x^2-4)*D[y[x],{x,2}]+Log[x]*y[x]==x*Exp[x]; ic={y[1]==1,Derivative[1][y][1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(x) + (x**2 - 4)*Derivative(y(x), (x, 2)) + y(x)*log(x),0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 2} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : solve: Cannot solve -x*exp(x) + (x**2 - 4)*Derivative(y(x), (x, 2)) + y(x)*log(x)