71.9.10 problem 10

Internal problem ID [14418]
Book : Ordinary Differential Equations by Charles E. Roberts, Jr. CRC Press. 2010
Section : Chapter 4. N-th Order Linear Differential Equations. Exercises 4.1, page 186
Problem number : 10
Date solved : Monday, March 31, 2025 at 12:26:37 PM
CAS classification : [[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}&=0 \end{align*}

Maple. Time used: 0.023 (sec). Leaf size: 17
ode:=2*y(x)*diff(diff(y(x),x),x)-diff(y(x),x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ y &= \frac {\left (c_1 x +c_2 \right )^{2}}{4} \\ \end{align*}
Mathematica. Time used: 0.017 (sec). Leaf size: 29
ode=2*y[x]*D[y[x],{x,2}]-(D[y[x],x])^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {(c_1 x+2 c_2){}^2}{4 c_2} \\ y(x)\to \text {Indeterminate} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(2)*sqrt(y(x)*Derivative(y(x), (x, 2))) + Derivative(y(x), x) cannot be solved by the factorable group method