72.5.4 problem 1 and 13 (iv)

Internal problem ID [14619]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number : 1 and 13 (iv)
Date solved : Monday, March 31, 2025 at 12:43:51 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=3 y \left (y-2\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 5
ode:=diff(y(t),t) = 3*y(t)*(y(t)-2); 
ic:=y(0) = 2; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = 2 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[y[t],t]==3*y[t]*(y[t]-2); 
ic={y[0]==2}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 2 \]
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((6 - 3*y(t))*y(t) + Derivative(y(t), t),0) 
ics = {y(0): 2} 
dsolve(ode,func=y(t),ics=ics)
 
ValueError : Couldnt solve for initial conditions