73.6.7 problem 7.4 (e)

Internal problem ID [15075]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 7. The exact form and general integrating fators. Additional exercises. page 141
Problem number : 7.4 (e)
Date solved : Monday, March 31, 2025 at 01:21:23 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, _dAlembert]

\begin{align*} 4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.083 (sec). Leaf size: 23
ode:=4*x^3*y(x)+(x^4-y(x)^4)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {RootOf}\left (-5 x^{4} c_1^{4} \textit {\_Z} +\textit {\_Z}^{5}-1\right )}{c_1} \]
Mathematica. Time used: 0.136 (sec). Leaf size: 50
ode=4*x^3*y[x]+(x^4-y[x]^4)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(x)}{x}}\frac {(K[1]-1) (K[1]+1) \left (K[1]^2+1\right )}{K[1] \left (K[1]^4-5\right )}dK[1]=-\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.616 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**3*y(x) + (x**4 - y(x)**4)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (y{\left (x \right )} \right )} = C_{1} - \log {\left (\sqrt [5]{\frac {5 x^{4}}{y^{4}{\left (x \right )}} - 1} \right )} \]