Internal
problem
ID
[15093]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
8.
Review
exercises
for
part
of
part
II.
page
143
Problem
number
:
6
Date
solved
:
Monday, March 31, 2025 at 01:23:28 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*y(x)*diff(y(x),x)-y(x)^2 = (x^4+x^2*y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x*y[x]*D[y[x],x]-y[x]^2==Sqrt[x^4+x^2*y[x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)*Derivative(y(x), x) - sqrt(x**4 + x**2*y(x)**2) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)