Internal
problem
ID
[15111]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
8.
Review
exercises
for
part
of
part
II.
page
143
Problem
number
:
24
Date
solved
:
Monday, March 31, 2025 at 01:25:11 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (2*y(x)+x)/(2*x-y(x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x+2*y[x])/(2*x-y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(x + 2*y(x))/(2*x - y(x)) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)