73.7.38 problem 38

Internal problem ID [15125]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 8. Review exercises for part of part II. page 143
Problem number : 38
Date solved : Monday, March 31, 2025 at 01:26:19 PM
CAS classification : [[_homogeneous, `class C`], _exact, _rational, _dAlembert]

\begin{align*} \left (y-x +3\right )^{2} \left (y^{\prime }-1\right )&=1 \end{align*}

Maple. Time used: 0.010 (sec). Leaf size: 78
ode:=(y(x)-x+3)^2*(diff(y(x),x)-1) = 1; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \left (-3 c_1 +3 x \right )^{{1}/{3}}+x -3 \\ y &= -\frac {\left (-3 c_1 +3 x \right )^{{1}/{3}}}{2}-\frac {i \sqrt {3}\, \left (-3 c_1 +3 x \right )^{{1}/{3}}}{2}+x -3 \\ y &= -\frac {\left (-3 c_1 +3 x \right )^{{1}/{3}}}{2}+\frac {i \sqrt {3}\, \left (-3 c_1 +3 x \right )^{{1}/{3}}}{2}+x -3 \\ \end{align*}
Mathematica. Time used: 0.475 (sec). Leaf size: 95
ode=(y[x]-x+3)^2*(D[y[x],x]-1)==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x+\sqrt [3]{3} \sqrt [3]{x+9+c_1}-3 \\ y(x)\to x+\frac {1}{2} i \sqrt [3]{3} \left (\sqrt {3}+i\right ) \sqrt [3]{x+9+c_1}-3 \\ y(x)\to x-\frac {1}{2} \sqrt [3]{3} \left (1+i \sqrt {3}\right ) \sqrt [3]{x+9+c_1}-3 \\ \end{align*}
Sympy. Time used: 20.450 (sec). Leaf size: 762
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((Derivative(y(x), x) - 1)*(-x + y(x) + 3)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \text {Solution too large to show} \]