Internal
problem
ID
[16092]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
27
Date
solved
:
Monday, March 31, 2025 at 02:41:38 PM
CAS
classification
:
[[_homogeneous, `class D`], _Bernoulli]
ode:=y(t)-t*diff(y(t),t) = 2*y(t)^2*ln(t); dsolve(ode,y(t), singsol=all);
ode=y[t]-t*D[y[t],t]==2*y[t]^2*Log[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*Derivative(y(t), t) - 2*y(t)**2*log(t) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)