74.10.44 problem 42 (b)

Internal problem ID [16178]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.2, page 147
Problem number : 42 (b)
Date solved : Monday, March 31, 2025 at 02:46:04 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2}&=0 \end{align*}

Maple. Time used: 0.159 (sec). Leaf size: 82
ode:=diff(diff(y(t),t),t)^2-2*diff(diff(y(t),t),t)*diff(y(t),t)+y(t)^2 = 0; 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= 0 \\ y &= c_1 \,{\mathrm e}^{t} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (t +\int _{}^{\textit {\_Z}}\frac {1}{\textit {\_f}^{2}+\sqrt {\textit {\_f}^{2}-1}-\textit {\_f}}d \textit {\_f} +c_1 \right )d t +c_2} \\ y &= {\mathrm e}^{\int \operatorname {RootOf}\left (t -\int _{}^{\textit {\_Z}}-\frac {1}{\textit {\_f}^{2}-\sqrt {\textit {\_f}^{2}-1}-\textit {\_f}}d \textit {\_f} +c_1 \right )d t +c_2} \\ \end{align*}
Mathematica
ode=D[y[t],{t,2}]^2-2*D[y[t],{t,2}]*D[y[t],t]+y[t]^2==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t)**2 - 2*Derivative(y(t), t)*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 2))**2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : The given ODE -(y(t)**2 + Derivative(y(t), (t, 2))**2)/(2*Derivative(y(t), (t, 2))) + Derivative(y(t), t) cannot be solved by the factorable group method