74.14.4 problem 4

Internal problem ID [16338]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.6, page 187
Problem number : 4
Date solved : Monday, March 31, 2025 at 02:50:38 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+9 y^{\prime \prime }&=1 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 28
ode:=diff(diff(diff(diff(y(t),t),t),t),t)+9*diff(diff(y(t),t),t) = 1; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {t^{2}}{18}-\frac {\cos \left (3 t \right ) c_1}{9}-\frac {\sin \left (3 t \right ) c_2}{9}+c_3 t +c_4 \]
Mathematica. Time used: 60.025 (sec). Leaf size: 47
ode=D[y[t],{t,4}]+9*D[y[t],{t,2}]==1; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \int _1^t\int _1^{K[2]}\left (c_1 \cos (3 K[1])+c_2 \sin (3 K[1])+\frac {1}{9}\right )dK[1]dK[2]+c_4 t+c_3 \]
Sympy. Time used: 0.086 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(9*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 4)) - 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} + C_{2} t + C_{3} \sin {\left (3 t \right )} + C_{4} \cos {\left (3 t \right )} + \frac {t^{2}}{18} \]