74.15.5 problem 5

Internal problem ID [16373]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 5
Date solved : Monday, March 31, 2025 at 02:51:28 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 4 x^{2} y^{\prime \prime }+17 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=4*x^2*diff(diff(y(x),x),x)+17*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (c_1 \sin \left (2 \ln \left (x \right )\right )+c_2 \cos \left (2 \ln \left (x \right )\right )\right ) \]
Mathematica. Time used: 0.027 (sec). Leaf size: 28
ode=4*x^2*D[y[x],{x,2}]+17*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sqrt {x} (c_2 \cos (2 \log (x))+c_1 \sin (2 \log (x))) \]
Sympy. Time used: 0.090 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + 17*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (C_{1} \sin {\left (2 \log {\left (x \right )} \right )} + C_{2} \cos {\left (2 \log {\left (x \right )} \right )}\right ) \]