75.4.3 problem 48

Internal problem ID [16634]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Section 4. Equations with variables separable and equations reducible to them. Exercises page 38
Problem number : 48
Date solved : Monday, March 31, 2025 at 03:02:34 PM
CAS classification : [_separable]

\begin{align*} y^{\prime } \sin \left (x \right )-y \cos \left (x \right )&=0 \end{align*}

With initial conditions

\begin{align*} y \left (\frac {\pi }{2}\right )&=1 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 6
ode:=diff(y(x),x)*sin(x)-y(x)*cos(x) = 0; 
ic:=y(1/2*Pi) = 1; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \sin \left (x \right ) \]
Mathematica. Time used: 0.03 (sec). Leaf size: 7
ode=D[y[x],x]*Sin[x]-y[x]*Cos[x]==0; 
ic={y[Pi/2]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \sin (x) \]
Sympy. Time used: 0.234 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*cos(x) + sin(x)*Derivative(y(x), x),0) 
ics = {y(pi/2): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sin {\left (x \right )} \]