Internal
problem
ID
[16637]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Section
4.
Equations
with
variables
separable
and
equations
reducible
to
them.
Exercises
page
38
Problem
number
:
51
Date
solved
:
Monday, March 31, 2025 at 03:02:43 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=x*(1-y(x)^2)^(1/2)+y(x)*(-x^2+1)^(1/2)*diff(y(x),x) = 0; ic:=y(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=x*Sqrt[1-y[x]^2]+y[x]*Sqrt[1-x^2]*D[y[x],x]==0; ic={y[0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*sqrt(1 - y(x)**2) + sqrt(1 - x**2)*y(x)*Derivative(y(x), x),0) ics = {y(0): 1} dsolve(ode,func=y(x),ics=ics)