Internal
problem
ID
[17076]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.5
Linear
equations
with
variable
coefficients.
The
Lagrange
method.
Exercises
page
148
Problem
number
:
648
Date
solved
:
Monday, March 31, 2025 at 03:40:02 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=x*(x-1)*diff(diff(y(x),x),x)-(2*x-1)*diff(y(x),x)+2*y(x) = x^2*(2*x-3); dsolve(ode,y(x), singsol=all);
ode=x*(x-1)*D[y[x],{x,2}]-(2*x-1)*D[y[x],x]+2*y[x]==x^2*(2*x-3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*(2*x - 3) + x*(x - 1)*Derivative(y(x), (x, 2)) - (2*x - 1)*Derivative(y(x), x) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-2*x**3 + x**2*Derivative(y(x), (x, 2)) + 3*x**2 - x*Derivative(y(x), (x, 2)) + 2*y(x))/(2*x - 1) cannot be solved by the factorable group method