75.23.7 problem 730

Internal problem ID [17133]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 18.1 Integration of differential equation in series. Power series. Exercises page 171
Problem number : 730
Date solved : Monday, March 31, 2025 at 03:42:49 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right )&=0 \end{align*}

Using series method with expansion around

\begin{align*} {\mathrm e} \end{align*}

With initial conditions

\begin{align*} y \left ({\mathrm e}\right )&={\mathrm e}^{-1}\\ y^{\prime }\left ({\mathrm e}\right )&=0 \end{align*}

Maple. Time used: 0.014 (sec). Leaf size: 116
Order:=6; 
ode:=ln(x)*diff(diff(y(x),x),x)-sin(x)*y(x) = 0; 
ic:=y(exp(1)) = 1/exp(1), D(y)(exp(1)) = 0; 
dsolve([ode,ic],y(x),type='series',x=exp(1));
 
\[ y = {\mathrm e}^{-1}+\frac {1}{2} \sin \left ({\mathrm e}\right ) {\mathrm e}^{-1} \left (x -{\mathrm e}\right )^{2}+\frac {1}{6} \left (\cos \left ({\mathrm e}\right ) {\mathrm e}-\sin \left ({\mathrm e}\right )\right ) {\mathrm e}^{-2} \left (x -{\mathrm e}\right )^{3}+\left (\frac {\sin \left ({\mathrm e}\right )^{2} {\mathrm e}^{-1}}{24}+\frac {\left (-{\mathrm e}^{-1}+3 \,{\mathrm e}^{-3}\right ) \sin \left ({\mathrm e}\right )}{24}-\frac {{\mathrm e}^{-2} \cos \left ({\mathrm e}\right )}{12}\right ) \left (x -{\mathrm e}\right )^{4}-\frac {1}{120} \left (\left (-2 \sin \left (2 \,{\mathrm e}\right )+\cos \left ({\mathrm e}\right )\right ) {\mathrm e}^{3}+\left (4 \sin \left ({\mathrm e}\right )^{2}-3 \sin \left ({\mathrm e}\right )\right ) {\mathrm e}^{2}-9 \cos \left ({\mathrm e}\right ) {\mathrm e}+14 \sin \left ({\mathrm e}\right )\right ) {\mathrm e}^{-4} \left (x -{\mathrm e}\right )^{5}+\operatorname {O}\left (\left (x -{\mathrm e}\right )^{6}\right ) \]
Mathematica
ode=Log[x]*D[y[x],{x,2}]-Sin[x]*y[x]==0; 
ic={y[Exp[1]]==1/Exp[1],Derivative[1][y][ Exp[1] ]==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,exp(1),5}]
 

Not solved

Sympy. Time used: 3.088 (sec). Leaf size: 85
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)*sin(x) + log(x)*Derivative(y(x), (x, 2)),0) 
ics = {y(E): exp(-1), Subs(Derivative(y(x), x), x, E): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=E,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {\left (x - e\right )^{4} \sin ^{2}{\left (x + e \right )}}{24 \log {\left (x + e \right )}^{2}} + \frac {\left (x - e\right )^{2} \sin {\left (x + e \right )}}{2 \log {\left (x + e \right )}} + 1\right ) + C_{1} \left (x + \frac {\left (x - e\right )^{3} \sin {\left (x + e \right )}}{6 \log {\left (x + e \right )}} - e\right ) + O\left (x^{6}\right ) \]