Internal
problem
ID
[17359]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
10
Date
solved
:
Monday, March 31, 2025 at 03:59:36 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=(y(x)+x*exp(x/y(x)))*diff(y(x),x) = y(x)*exp(x/y(x)); dsolve(ode,y(x), singsol=all);
ode=(y[x]+x*Exp[x/y[x]])*D[y[x],x]==y[x]*Exp[x/y[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x*exp(x/y(x)) + y(x))*Derivative(y(x), x) - y(x)*exp(x/y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)